Source code for glue.utils.geometry

from __future__ import absolute_import, division, print_function

import numpy as np

__all__ = ['points_inside_poly', 'polygon_line_intersections']


[docs]def points_inside_poly(x, y, vx, vy): from matplotlib.path import Path p = Path(np.column_stack((vx, vy))) return p.contains_points(np.column_stack((x, y)))
[docs]def polygon_line_intersections(px, py, xval=None, yval=None): """ Find all the segments of intersection between a polygon and an infinite horizontal/vertical line. The polygon is assumed to be closed. Due to numerical precision, the behavior at the edges of polygons is not always predictable, i.e. a point on the edge of a polygon may be considered inside or outside the polygon. Parameters ---------- px, py : `~numpy.ndarray` The vertices of the polygon xval : float, optional The x coordinate of the line (for vertical lines). This should only be specified if yval is not specified. yval : float, optional The y coordinate of the line (for horizontal lines). This should only be specified if xval is not specified. Returns ------- segments : list A list of segments given as tuples of coordinates along the line. """ if xval is not None and yval is not None: raise ValueError("Only one of xval or yval should be specified") elif xval is None and yval is None: raise ValueError("xval or yval should be specified") if yval is not None: return polygon_line_intersections(py, px, xval=yval) px = np.asarray(px, dtype=float) py = np.asarray(py, dtype=float) # Make sure that the polygon is closed if px[0] != px[-1] or py[0] != py[-1]: px = np.hstack([px, px[0]]) py = np.hstack([py, py[0]]) # For convenience x1, x2 = px[:-1], px[1:] y1, y2 = py[:-1], py[1:] # Vertices that intersect keep1 = (px == xval) points1 = py[keep1] # Segments (excluding vertices) that intersect keep2 = ((x1 < xval) & (x2 > xval)) | ((x2 < xval) & (x1 > xval)) points2 = (y1 + (y2 - y1) * (xval - x1) / (x2 - x1))[keep2] # Make unique and sort points = np.array(np.sort(np.unique(np.hstack([points1, points2])))) # Because of various corner cases, we don't actually know which pairs of # points are inside the polygon, so we check this using the mid-points ymid = 0.5 * (points[:-1] + points[1:]) xmid = np.repeat(xval, len(ymid)) keep = points_inside_poly(xmid, ymid, px, py) segments = list(zip(points[:-1][keep], points[1:][keep])) return segments